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We study the transmission of a signal through a dispersionless fiber with in-line
amplifiers. The nonlinearities of the fiber and the noise generated at each
amplifier are taken into account. Exact analytical expressions are obtained for
the field averages. From these results we obtain the distributed amplification
approximation, and study the conditions under which this approximation is
valid.
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1. INTRODUCTION

In long (transoceanic) lightwave systems with optical amplifiers fiber non-
linearities are important, even for the low powers used in optical commu-
nications. In particular, Kerr nonlinearity and spontaneous emission noise
of the in-line amplifiers produce large effects when they act together at the
zero-dispersion point of a fiber. An analytical study of the transmission of
a signal through a dispersionless fiber with in-line amplifiers has been
undertaken by assuming that the amplifier spacing is much shorter than the
nonlinear length of the fiber. (1) This allows to substitute the independent
noises generated at each amplifier by a noise distributed along the fiber
that is delta correlated in space. This distributed amplification model has
been used to obtain the maximum propagation distance for the safe opera-
tion of systems operating at zero dispersion.

In this paper we present the exact analytical solution for the original
discrete system with periodic optical amplification. The delta-correlated



spontaneous-emission noise generated at each amplifier is adequately
filtered, in a way that its variance remains finite. We consider ideal squared
filters with a bandwidth much smaller than the bandwidth of the optical
amplifiers. We denote B the bandwidth of the filtered noise, which means
that its spectrum is flat for |w| < pB and vanishes outside. Our exact results
for the field averages are used to obtain the limits of validity of the dis-
tributed amplification model. The effect of the amplifier spacing on the
propagation of the field is also analyzed.

The paper is organized as follows. In Section 2 the model for the
propagation along the fiber is introduced. An expression for the signal at
any amplifier is given in Section 3. In Section 4 the exact analytical expres-
sions for one-time statistical properties of the propagating field are derived.
These results are used in Section 5 to give the asymptotic expression for the
signal at long propagation distances. In Section 6 the effect of the amplifier
spacing is studied and the limits of validity of the distributed amplification
model are obtained.

2. THE SYSTEM

We are considering a communication system consisting of a fiber
working at its zero-dispersion point. In order to compensate for the losses
in the fiber, equally separated in-line amplifiers are included in the system.
Let l be the distance between the amplifiers. We shall assume that the first
amplifier is located the same distance l away from the source of the signal.
Between amplifiers the evolution of the slowly varying amplitude of a
single-mode linearly polarized field is governed by the following nonlinear
equation (2)

“

“z
U(z, t)= −CU(z, t) − jd |U(z, t)|2 U(z, t). (2.1)

The first term on the right-hand side represents the fiber loss, and the
last term represents the effect of the Kerr nonlinearity, j denoting the
imaginary unit ( j=`− 1), and

d=
2p
l

n2
1

Aeff
, (2.2)

where n2 is the nonlinear index, Aeff is the effective cross section of the
fiber, and l is the free-space wavelength at the carrier frequency w0.

At each amplifier two effects have to be considered, namely, the
amplifying effect and the generation of noise coming from the spontaneous
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emission within the amplifier. As a consequence, and assuming that the
spatial extension of the amplifiers is negligible as compared to l, the output
of an amplifier is given in terms of its input, by

Uout(t)=G1/2Uin(t)+s(t), (2.3)

where

G=exp(2Cl) (2.4)

is the amplifier gain, calculated so as to compensate exactly for the fiber
loss, and s(t) denotes a complex gaussian noise accounting for the filtered
spontaneous emission noise of the amplifier. If we denote its real and
imaginary parts by W(t) and Y(t) respectively, the first and second order
moments at equal times are given by

OW(t)P=OY(t)P=0, (2.5)

OW2(t)P=OY2(t)P=s2=
Kl
2

, OW(t) Y(t)P=0, (2.6)

with

K=(w0
(G − 1)

l
Bha, (2.7)

where ha is the noise-enhancement factor that accounts for incomplete
inversion and B is the bandwidth of the filtered noise (See refs. 1, 3, and 4).
The quantity K is introduced for further comparison with the results
obtained with the distributed amplification model (1) and represents essen-
tially the amount of noise intensity per unit length.

Let us now introduce the following notation: sn=Wn+jYn denotes the
noise generated at the n th amplifier, Un the input signal and Ūn the output
signal at the same amplifier, N the number of amplifiers, and f(x1,y1,x2,
y2,...,xN,yN) the joint density function of all the noisesWn and Yn. The time
dependence is not relevant since only one-time statistical properties will be
calculated. We then have the following relations

Ūn=G1/2Un+sn, (2.8)

OWnP=OYnP=0, (2.9)

OWnWnŒP=OYnYnŒP=s2dnnŒ, OWnYnŒP=0, (2.10)

f(x1, y1, x2, y2,..., xN, yN)=
1

(s`2p)2N
exp 5 − ;N

i=1 (x2i+y2i)
2s2
6. (2.11)
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The signal between consecutive amplifiers can be obtained by solving
the differential equation (2.1), and is given by

U(z)=Ūne −C(z−nl) exp 5 − jdl |Ūn |2 1
1 − e −2C(z−nl)

2Cl
26, (2.12)

if nl < z < (n+1) l, which leads to

Un+1=Ūne −Cl− jdlr |Ūn |
2
, (2.13)

where

r=
1 − e −2Cl

2Cl
. (2.14)

3. GENERAL SOLUTION

Our aim in this section is to obtain the expression of the signal at any
amplifier of the array in terms of the signal at the source and the param-
eters of the system. The general relations of the former section enable us to
obtain the following

Theorem 3.1. Let U0 be the signal at the source, s̄0=0, and s̄n, with
n=1, 2,..., N, N gaussian independent noises statistically equivalent to sn.
Then, the signal Un just before the nth amplifier is given by

Un=e −Cl 1U0+ C
n−1

i=0
s̄i 2 exp 3 − jdrl 5 C

n

k=1

:U0+C
k−1

i=0
s̄i :
2 64, (3.1)

Proof. We make the proof in three steps.

Step 1. First we can obtain from Eqs. (2.8) and (2.13) the following
iteration relation

Un+1=(Un+sne −Cl) exp( − jdrl |UneCl+sn |2). (3.2)

We now introduce the following quantities for n \ 1:

en :=exp 5 jdrl C
n−1

k=0
|Ūk |2 6, (3.3)
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and

Vn :=UneneCl. (3.4)

For the sake of completeness we also define V0=U0 and e0=0.

Lemma 3.1. Vn=U0+;n−1
i=0 snen.

Proof. From (3.3) we get en+1=en exp( jdrl |Ūn |2) , whence, with the
aid of Eqs. (3.2) and (3.4), it results

Vn+1=(eClUnen+snen) exp( jdrl |Ūn |2) exp( − jdrl |UneCl+sn |2). (3.5)

Now Eq. (2.8) and the definition of Vn give

Vn+1=Vn+snen=enŪn, (3.6)

whose solution completes the proof of the lemma. L

Step 2. Let us define s̄n=snen. The statistical properties of these
quantities are established in the following

Lemma 3.2. The s̄n are gaussian noises statistically identical to
the sn .

Proof. From Lemma 3.1 we can write en in terms of the noises sn and
the signal at the source U0, which is noise-independent. From Eq. (2.8), the
definitions of Vn and sn and the Eq. (3.6), we have |Ūk |=|Vk+1 |. As a con-
sequence we get

s̄n=snexp 5 jdrl C
n

k=1
|Vk |26=sn exp 5 jdrl C

n

k=1

:U0+ C
n−1

i=0
s̄n :
2 6. (3.7)

Let us denote, for n [ N, S (n)=(W1, Y1, W2, Y2,..., Wn, Yn) and S̄ (n)=
(W̄1, Ȳ1, W̄2, Ȳ2,..., W̄n, Ȳn). And let gn the vector function relating S (n) and
S̄ (n) as given by Eq. (3.7): S (n)=gn(S̄ (n)). We also know the density function
of S (N), given by Eq. (2.11), fS(N)=f, and we want to calculate fS̄(N). To do
this we first prove that gn is invertible and with unit Jacobian. The exis-
tence of g −1n consists in the possibility of expressing S̄ (n) in terms of S (n).
And this is easily done by induction
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s1=s̄1 exp( − jdrl |U0 |2) S s̄1=s1 exp(jdrl |U0 |2),

s2=s̄2 exp[ − jdrl(|U0 |2+|U0+s̄1 |2)] S

s̄2=s2 exp[ jdrl(|U0 |2 + |U0+s1e jdrl |U0|
2
|2)],

and so on.
As concerns the jacobian, it can also be proved by induction on n. If

we call Jn the jacobian matrix of S (n) with respect to S̄ (n), it is easy to prove
that det(Jn+1)=det(Jn). To see this note that sn, when expressed in terms
of the s̄ ’s, does not depend on s̄k with k > n, and its dependence on s̄n is
only linear. Due to this it is easy to see that

Jn+1=R
Jn 0

B
cos kn

− sin kn

sin kn
cos kn

S (3.8)

where 0 is the null 2n × 2 matrix, B another 2 × 2n irrelevant matrix and kn
depends on s̄k with k=1, 2,..., n − 1. Finally, J1=1.

Now we can write the relation between the density functions of S
and S̄

fS̄(N)(z̄)=fS(N)(gN(z̄)), (3.9)

where z=(x1, y1, x2, y2,..., xN, yN) and similar for z̄. We can end the proof
of Lemma 3.2 taken into account that the density function f only depends
on the combination x2i+y2i and this expression is conserved by the func-
tion gn. So, we finally get fS̄(N)=f. L

Step 3. It just remains to put together Eqs. (3.3), and (3.4), as well
as the two lemmas so as to end the proof of the Theorem 3.1. L

To end this section we prove the following

Corollary 3.1. Let l0=0, and, for i [ N, li=ri+jIi, R — (r1,
r2,..., rN) and I — (I1, I2,..., IN) being independent equally distributed real
random vectors with zero mean and covariance matrix, C (N), given by
C (N)ij =s2 min{i, j}. Then

(a) the signal Un just before the n th amplifier is given by

Un=e −Cl(U0+ln−1) exp 3 − jdrl C
n−1

k=0
|U0+lk |24, (3.10)
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(b) The signal Ūn just after the nth amplifier is given by

Ūn=(U0+ln) exp 3 − jdrl C
n−1

k=0
|U0+lk |24. (3.11)

Proof. Just as we did with sn, we introduce the real and the imagi-
nary parts of s̄n, W̄n and Ȳn. Now we define, for i=1, 2,..., N,

ri=C
i

j=1
W̄j, Ii=C

i

j=1
Ȳj. (3.12)

The statistical properties of these new random variables follow immediately
from those of W̄n and Ȳn. First, they are gaussian because of being linear
combinations of gaussian noises. Then, their first two moments are easily
obtained from those of W̄n and Ȳn, Eqs. (2.9) and (2.10). With this it is
straightforward to get Eq. (3.11) from Eq. (3.1) in Theorem 3.1. Finally,
Eq. (3.12) can be obtained with the aid of Eq. (2.13) and the expression
for Un. L

It will also be useful to write the joint density function of R and I.
According to this corollary we have

fl(x1, y1, x2, y2,..., xN, yN)=fd(x1, x2,..., xN) fd(y1, y2,..., yN), (3.13)

where

fd(x1, x2,..., xN)=
1

(s`2p)2N
exp 5 − 1

2s2
C
ij

G (N)ij xixj 6, (3.14)

is the density function of R and I separately. In that expression the matrix
G (N) is related to the inverse of the covariance matrix by G (N)/s2=(C) −1

and its elements are

G (N)ij =˛
2 if i=j ] N

− 1 if |i − j|=1

1 if i=j=N

0 otherwise.

(3.15)

In order to simplify notation we shall use in the following G instead G (N)

whenever this is not misleading.
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4. ONE-TIME STATISTICAL PROPERTIES OF Un

The one-time statistical properties of the signal at the end of the
transmission line are easily calculated taking advantage of the gaussian
property of the noises. From the expression obtained for Un in the previous
section, it is straightforward to get

7Un
N+1U

gm
N+1
8=e −(n+m) Cl

“
n+m

“sn1 “s
m
2

M (N+1)
n−m (s1, s2) :

s1=s2=0
, (4.1)

where

M (N+1)
n (s1, s2)=7exp 5 s1(U0+lN)+s2(U

g
0+l

g
N) − jdrln C

N

k=0
|U0+lk |2 68.

(4.2)

The following theorem, which is the central result of this paper, gives an
explicit expression of this function:

Theorem 4.1. Let Uk(z) be the Chebyshev polynomials (5) defined by
Un(cos h)=sin[(n+1) h]/sin h. Let also Dk(z)=Uk(z/2), bn=drnl2K,

FN, 1(b)=
1

UN(1+jb/2) − UN−1(1+jb/2)
, (4.3a)

and

FN, 2(b)=
UN(1+jb/2)

UN(1+jb/2) − UN−1(1+jb/2)
. (4.3b)

Then

M (1)
n (s1, s2)=exp[s1U0+s2U

g
0− jdrln |U0 |2], (4.4)

and, for N > 0,

M (N+1)
n (s1, s2)=FN, 1(bn) exp[(s1U0+s2U

g
0) FN, 1(bn)

+(Ks1s2− jdrn |U0 |2) lFN, 2(bn) − Kls1s2]. (4.5)

Since nothing in the proof appears to be relevant for the rest of the
paper, this proof is relegated to the Appendix.
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The parameter bn is related to the distance z2=(2drK) −1/2 over which
the spontaneous-emission power alone gives a Kerr phase shift of the order
of unity. (1) In fact bn=n(l/z2)2/2, whence, in particular, b −1/22 corresponds
to the number of amplifiers necessary to achieve a distance z2. This number
is a function of the amplifier spacing l, which can be obtained from the
definition of bn in Theorem 4.1 and Eqs. (2.7) and (2.14). We get

bn=2n
d(w0Bha
C

sinh2(Cl). (4.6)

Due to the small value of the nonlinear parameter d, bn will take small
values provided that the amplifier spacing is not too large. For example,
assuming the values taken in ref. 1, (B=270 GHz, ha=2, l=1.53 mm,
d=3.75 × 10 −3 mW −1 km −1, C=0.024 km −1) we obtain for l=60 km a
value b2=1.74× 10 −4. Then b2 will take small values for amplifier spacings
not longer than 220 km. (The numerical values given above between
brackets will be used throughout the rest of the paper.)

It is easy now to give a general expression for the moments of UN. We
simply have to put the expression of M (N)

n , (4.5), into Eq. (4.1), and make
use of the Leibniz relation,

dm

dxm
[f(x) g(x)]= C

m

k=0

1m
k
2 dkf(x)

dxk
dm−kg(x)

dxm−k
. (4.7)

The result is, for m [ n,

OUn
N+1U

gm
N+1P=e −(n+m) Cl exp[ − jdr(n − m) |U0 |2 lFN, 2(dr(n − m) l2K)]

× C
m

j=0
K jl j(FN, 2(dr(n − m) l2K) − 1) j j! 1

n

j
21m

j
2

× Fn+m+1−2jN, 1 (dr(n − m) l2K) Un−j
0 Ug

0
m−j. (4.8)

The lowest, more relevant, moments are

OUN+1P=e −ClU0F
2
N, 1(drl

2K) exp[ − jdrl |U0 |2 FN, 2(drl2K)], (4.9)

O|UN+1 |2P=e −2Cl[|U0 |2+Kl(N+1)], (4.10)

OU2
N+1P=e −2ClU2

0F
3
N, 1(2drl

2K) exp[ − 2jdrl |U0 |2 FN, 2(2drl2K)]. (4.11)
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5. BEHAVIOR AT LARGE DISTANCE

In this section we study the asymptotic expression of the signal when
the number of amplifiers is big enough. We will see that, after a sufficiently
high number of amplifiers, the signal decreases exponentially. We indeed
have the following

Theorem 5.1. Let z(b)=1+jb/2+`jb − b2/4, where the square
root is such that both its real and imaginary parts are positive. It is easy to
see that with this choice |z(b)| is larger than one if b is positive. For N big
enough to have

|z(bn)| −2N° 1 (5.1)

the functions FN, 1 and FN, 2 behave according to

|FN, 1(bn)|2 4 C1(bn) exp[ − 2N ln(|z(bn)|)]

=C1(bn) exp[ − z`2drnK/C2(bn)], (5.2)

and

FN, 2(bn) 4
z(bn)
z(bn) − 1

, (5.3)

where z=(N+1) l 4 Nl and

C1(bn)=:
z(bn)+1
z(bn)
:2, and C2(bn)=

`2bn
ln(|z(bn)|2)

. (5.4)

Proof. Remember first the definition of the Chebyshev polynomials:
If x=cos h, then UN(x)=sin((N+1) h)/sin h. Let us introduce now
z=e ih. Then

x=
z+z −1

2
and UN(x)=

zN+1−z −(N+1)

z−z −1
. (5.5)

It is straightforward to see that, if we put x=1+jb/2, the corresponding z
is just z(b). In the following z will denote in fact z(bn). Now, the conditions
of the theorem state that the negative power of z in the second of equations
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(5.5) is negligible against the positive power. Then, we can make the
following approximations

UN 4
zN+1

z−z −1
, UN− UN−1 4

zN+1−zN

z−z −1
=1 z− 1
z−z −1
2 zN=

z

z+1
zN, (5.6)

whence it immediately follows (5.3). Finally, putting |zN| −2=
exp[ − 2N ln |z|],N=z/l, and expressing l in terms of bn we obtain (5.2). L

We ask now how big N must be in order to fulfill the condition of the
theorem, namely, |z| −2N° 1. To be more specific, we will look for the
smallest integer, say Nc, such that |z| −2Nc [ 0.01. Introducing f(bn)=
ln(10)/ln(|z|), we have Nc=[f(bn)]+1, where [x] denotes the integer part
of x. It is easy to realize that f(b) is a decreasing function. Moreover, for
very small bn (bn ° 1) we can approximate f(bn) 4 2 ln 10/`2bn whereas
for large bn, f 4 ln 10/ln(bn). In particular, for bn \ 10 Nc=1.

Taking into account that b −1/22 gives the number of amplifiers that
corresponds to the distance z2, we obtain that for small bn the required
distance to fulfill the condition of the theorem, zc — (Nc+1) l, is of the
order of 4z2. Furthermore, provided l is not too large, this is also the
characteristic length associated with the decay of the exponential in (5.2).
The reason is that C2 is of the order of 1 except for too large bn, while C1
always takes values between 1 and 4. For the parameter values considered
in the previous section we obtain for l=60 km the distance zc=20820 km
if we fix our attention on the first-order moment (n=1).

In order to have an idea of how the moments behave at large distance,
we must replace FN, 1 and FN, 2 in (4.5) or in (4.8) by their approximations,
(5.2) and (5.3). The fact that Fn, 2 appears in an exponent puts another limit
on the validity of the approximation. This can be written as

drl |U0 |2 :FN, 2(bn)−
z(bn)
z(bn) − 1
:

4
d |U0 |2

2C
(1 − e −2Cl) : z(bn)+1

z(bn)(z(bn) − 1)
: |z(bn)| −2N° 1, (5.7)

where the other restriction, given by Eq. (5.1), has been used. This is a new
condition only in the case that the expression ahead of |z(bn)| −2N is greater
than one. Again this condition depends on the parameters of the system.
But now it also depends on the power of the injected signal. Assuming
again the values used in ref. 1, and taking for l, for example, the values 60,
100, and 200 km, we have that the maximum power for this condition to be
less restrictive than (5.1) is, respectively, 0.065, 0.172, and 2.33 mW. Then
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Fig. 1. Real part of the signal mean value at the position of the amplifiers for different
values of the injected signal power and of the distance between amplifiers. In the cases l=60
and 100 km a line plot is used since the amplifiers are too close at the scale of the figures.
Exact expression: solid line or circle; large distance approximation: dash-dotted line or square.
In each case the minimum distance for the approximation to be valid within an error of 1% is
shown. Units are mW1/2 for the vertical axis and thousands of kilometers for the horizontal
axis.

the behaviour at large distance depends also on the power when the ampli-
fier spacing is small. This is due to the fact that the expression that mul-
tiplies |z(bn)| −2N in Eq. (5.7) behaves as exp( −Cl) for small values of bn. In
Fig. 1 we present the exact values of the real part of the signal mean value,
as compared to the large distance approximation, for different values of the
signal power and of the distance between amplifiers. In each case the
minimum distance to have an error smaller than 1%, zc, is presented. This
value is independent of the power only when the amplifier spacing is long
enough.

6. COMPARISON WITH THE DISTRIBUTED AMPLIFICATION

APPROXIMATION

Analytical results for the field averages have been obtained by
Mecozzi (1) in the framework of the distributed amplification model. (1) In
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principle, this approximation requires the distance between amplifiers, l, to
be much smaller than both the nonlinear length, L0=1/(d |U|2), and the
total length, z. By analyzing the steps leading from our exact expressions to
Mecozzi’s, more precise and rigorous conditions will turn out. Note first
that the expression we have obtained forM (N+1)

n , (4.5), and the one obtained
by Mecozzi, Eq. (4.8) of ref. 1, own essentially the same structure, the dif-
ference lying in the specific functions FN, 1 and FN, 2. In order to compare
our results with those obtained by Mecozzi, (1) we fix our attention on a
given point of the transmission line. Let z be the given point, that we will
assume to be at the entrance of the N+1 amplifier, that is l(N+1)=z.
We indeed assume that a detector, and not an amplifier, is located at this
position.

6.1. Obtaining the Approximation

We could be tempted to make the limit l Q 0 with N Q. (so that
Nl=const) in our exact expressions. However, in Mecozzi results we find
some l-dependent quantities, namely, r and K. The reason is that, for
realistic values of C and l, the product Cl is not small. We then have to
consider l small but not strictly zero. In particular, we are not allowed to
make the l-small approximation in the expressions of r and K.

Now, since the functions FN, 1 and FN, 2 depend on l through the
parameter bn, and the limit l Q 0 implies bn Q 0, we are led to assume, as
the first condition for obtaining the Mecozzi approximation, that bn must
be much smaller than one. (Note that the higher the moment order, the
more restrictive this condition is. So, we will consider only low-order
moments.) We recall that this parameter is given by bn=n(l/z2)2/2. Then
very small values of bn are obtained when a large number of amplifiers are
necessary to get a noise-induced Kerr phase shift of the order of unity.
Then, remembering the definition of z(b) (see Theorem 5.1), for small bn, z
is close to 1, which allows to express z by means of a Taylor expansion.
Due to the relation between x and z, see (5.5), one can see that the param-
eter of the expansion is`bn, giving

z=1+`jbn+O(bn). (6.1)

Recall that in this expression we take the root with positive both real and
imaginary parts, which corresponds to the case in which the modulus of z
is larger than one. Now, the denominator of (5.5) can be approximated by

z−z −1 4 2`jbn . (6.2)
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This approximation cannot be made so naively in the numerator of (5.5)
since N is large. The correct procedure is

zN+1 4 (1+`jbn )N+1=[(1+`jbn )1/`jbn ] (N+1)`jbn 4 e `jbn(N+1). (6.3)

With this we easily arrive at the following approximation for the
Chebyshev polynomials

UN(1+jbn/2) 4
sinh(`jbn (N+1))

`jbn
. (6.4)

Now we put this in Eq. (4.3a) and make a Taylor expansion in powers
of `bn, taking into account that `bn ° N`bn but N`bn need not be
small. Finally, using (N+1)`bn=(ndrK)1/2 z, we obtain

FN, 1(ndrl2K) 4
1

cosh[( jndrK)1/2 z]
, (6.5)

which gives the Mecozzi expression for FN, 1.
For the other function, (4.3b), note that FN, 2(b)=UN(1+jb/2) FN, 1(b).

Then, using (6.4), (6.5) and the definition of bn we get

lFN, 2(ndrl2K) 4
tanh[( jndrK)1/2 z]

( jndrK)1/2
. (6.6)

which gives the Mecozzi expression for FN, 2.

6.2. Validity Conditions of the Approximation

Here we will analyze with more detail under which precise conditions
the various approximations undertaken above are valid. First of all, bn has
to be small enough for the series expansion of z, (6.1), to be valid. For
instance, if bn is of the order of 10 −4 the error in z would be of about 1%.
We can write then

bn — ndrKl2° 1 S l ° (ndrK) −1/2, (6.7)

and, if we are interested in low-order moments, the condition for the
smallness of l results

l ° (drK) −1/2, (6.8)
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which is of the order of the z2 of ref. 1. Curiously enough, this condition is
quite different to the one given by Mecozzi, l ° L0 — 1/(d |U|2), for the
validity of his approximation, in the sense that now it is the spontaneous-
emission noise power, instead of the signal power, what puts a limit on the
value of l. As we will see later, a variant of the Mecozzi condition has also
to be fulfilled. Note, however, that if one wants to test the condition (6.8),
one has to calculate r and K, which are l-dependent. This means that the
true condition for l is obtained from (6.8) after expressing everything in
terms of the actual quantities of the problem. The result is (see (4.6))

sinh(Cl) ° 1 C

2d(w0Bha
21/2. (6.9)

For example, the parameters of ref. 1 give, for b not greater than 0.01,
a maximum l of about 155 km.

There are further conditions for the validity of Mecozzi approxima-
tion. The first one concerns the possible values of N versus bn. These
quantities must be such that (1+`jbn )N can be approximated by the
exponential of Eq. (6.3). First we need bn to be small enough so that we can
approximate (1+`jbn )1/`jbn by e. For instance, if bn is of the order of
10 −4 the error in this step would be less than about 0.5%. This restriction
for l (or bn) is the same as that obtained above. Nevertheless the quantity
just mentioned is raised to the Nth power. And in principle the error
increases with N. Then this puts an upper limit on the possible values of N
and bn: for a given value of bn, N cannot be arbitrarily big, and also, if we
want the approximation to be valid for a certain value of N, then bn cannot
be arbitrarily big. In order to find how these quantities are restricted we are
going to compare the approximate expression of zN (see Eq. (6.3)), not with
its Taylor expansion, but with the exact expression. Curiously enough the
third term in (6.3) is much closer to the first one than the second term. We
first realize numerically that |z| is greater than |exp(`jbn )| — exp(`bn/2)
for values of bn up to about 14. Consequently, since bn must be small, the
relative error is given by

E(bn, N)=1 −1 e
`bn/2

|z|
2N. (6.10)

The behavior of this error versus bn is presented in Fig. 2 for various values
of N. More interestingly, a plot of E versus N is shown in Fig. 3 for differ-
ent values of bn. If we now define Nm(bn, E) as the largest possible value
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Fig. 2. Relative error made when the exact expression of zN is replaced by
exp[`jbn (N+1)] (solid line) and by (1+`jbn )N+1 (dash-dotted line). The error is plotted
against bn for various values of N.

of N which, for a given value of bn, gives a relative error not greater than E,
since the error increases with N, it is easy to see that Nm is the integer part
of F(bn, E), given by

F(bn, E)=
ln(1 − E)

`bn/2 − ln |z|
. (6.11)

Since bn must be small, a Taylor expansion of z in powers of bn gives

F(bn, E) 4
34E
b3/2n

. (6.12)

This allows an easy calculation of Nm. For instance, for very small values
of bn of the order of 10 −4, if we admit an error of about 1%, the maximum
number of amplifiers can be of the order of 340,000. Even an error of
0.0001 allows about 3,000 amplifiers. This value of bn corresponds to an
amplifier spacing of about 60 km. In practice, fewer amplifiers are neces-
sary and so we can say that this does not put a severe limitation on the
applicability of Mecozzi approximation when bn is very small. However,
this parameter increases in an exponential way with l (see (4.6)). If we
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Fig. 3. The same as Fig. 2 but plotted against N for different values of bn. We have shown
the corresponding amplifier spacing for n=1 and assumed the data of ref. 1, as said in the
text. In every case the maximum distance equals 60,000 Km.

consider a value l=200 km, we get Nm 4 13 for an error of about 1%, that
corresponds to a distance zm 4 2600 km. Then we can conclude that the
distributed amplification approximation cannot be used to analyze trans-
oceanic systems when the amplifier spacing is large. Note also that there is
not a lower limit for the admissible values of N.

Up to now we have been studying the conditions under which the
functions FN, 1 and FN, 2 can be approximated by the Mecozzi expressions.
We now need these approximate expressions not to modify appreciably the
values of the exact signal moments when they are used instead of the exact
functions in (4.8). In particular the exponent of the exponential should not
be very different. More specifically, we should impose

drl |U0 |2 :FN, 2(bn) −
tanh(`jbn (N+1))

`jbn
:° 1. (6.13)

If we want this condition to be fulfilled for as large N as possible, the
left hand side of this condition can be estimated by using its approximate
expression in the limit of large N. Taking into account the results of the
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previous section, Eqs. (5.3) and (5.4), and the properties of the hyperbolic
tangent, we have, for large N,

:FN, 2(bn) −
tanh(`jbn (N+1))

`jbn
: 4 : z
z− 1

−
1

`jbn
:, (6.14)

and it is easy to see that this last expression takes values between 0.5 (for bn
small) and 1 (for bn large). To have a better idea as to how the left hand
side of this expression behaves, a plot of it versus N is presented in Fig. 4
for different values of b. For example, in the case of ref. 1 with l=60 km,
that expression equals 0.4 at 6000 km. We see that the maximum error
made when FN, 2 is replaced by the Mecozzi expression lies between 0.5
and 1. Consequently, we obtain a new condition for the validity of the dis-
tributed amplification approximation, namely,

drl |U0 |2° 1. (6.15)

This is the only condition involving the intensity of the signal to be
transmitted, and corresponds to the one referred to by Mecozzi, but with
an effective nonlinear parameter dr, that takes into account the losses in

Fig. 4. Absolute error made in the substitution of FN, 2 by the Mecozzi expression, plotted
against N for different values of bn. Again the amplifier spacing is shown, as well as the
maximum distance, zm, for each plot.
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Fig. 5. Real part of the signal mean value for different values of the injected signal power
and of the distance between amplifiers. For l=60 and 100 km (again line plots; see caption of
Fig. 1) there is no appreciable difference. For l=200 km the error is considerable. Exact
expression: solid line; Mecozzi approximation: dash-dotted line. Units are like in Fig 1.

the fiber, instead of d. Since r depends on l that condition should rather be
written as

(1 − exp( − 2Cl)) °
2C
d |U0 |2

. (6.16)

We find in particular that, if the right hand side is much larger than one,
we have no new restriction on the values of l. Note that this will happen
whenever the signal intensity is small enough. However, this condition
does not imply very low powers. For example, using the parameter values
of Mecozzi’s paper, the signal power has to be much smaller than about
13 mW, which is not too restrictive. For a power of 0.25 mW the error can
be calculated to be of about 2%. In fact, for larger powers, an important
error is introduced in these models because the effect of the filters upon the
signal is not taken into account. This point will be discussed in a forth-
coming paper. In Fig. 5 we present the behavior of the real part of the
signal mean value for three values of l and two values of the injected
signal.3 We can realize that for l=200 the error is considerable, even for

3 Since we are considering the signal at the entrance of each amplifier, comparing our expres-
sions with Mecozzi’s requires to include in the latter the factor exp(−Cl)
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low signal powers. This value of the amplifier spacing corresponds to
b1=0.086, which is not small enough.

7. CONCLUSIONS

We have studied the transmission of a signal through a dispersionless
fiber with periodic optical amplification. The nonlinearities of the fiber and
the noise generated at each amplifier have been taken into account in our
analysis. We have obtained exact analytical expressions for one-time statis-
tical properties of the propagating field. These results have been used to
study signal propagation at long distances. We have also analyzed the
limits of validity of the distributed amplification approximation.

It has been shown that the signal decreases exponentially at distances
greater than z2, that is the distance at which the noise-induced Kerr phase
shift is of the order of unity. However, for small amplifier spacing the
asymptotic behavior depends also on the power of the injected signal. In
this case the distance at which the signal shows an exponential decay
increases with the injected power.

We have shown that the distributed amplification approximation can
be derived from our exact expressions when the amplifier spacing is much
smaller than z2. However, this approximation is only valid for propagation
distances smaller than a maximum value. This maximum transmission
distance decreases when the amplifier spacing increases. Finally, a condi-
tion involving the signal power has been derived for the validity of the
distributed amplification approximation. This condition corresponds to the
amplifier spacing being much smaller than the nonlinear length, but with
an effective nonlinear parameter that takes into account the losses in the
fiber. As a consequence the condition is satisfied irrespective of the ampli-
fier spacing whenever the signal power is smaller than a certain value.

APPENDIX: PROOF OF THEOREM 4.1

The case M (1)
n is trivial. For the rest we shall make the proof in four

steps.

Step 1. Taking into account that the real and the imaginary parts of
the noises are statistically independent and equally distributed we can put

M (N+1)
n (s1, s2)=e s1U0+s2U0

g
AN(s1+s2, drln, R(U0)) AN( j(s1− s2), drln, I(U0))

(A.1)
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where R and I denote respectively the real and the imaginary parts, and

AN(a, a, u)=7exp 5arN− ja C
N

k=0
(u+rk)268. (A.2)

Since the matrix G is real and symmetric, it is diagonalisable, its
eigenvalues, mi, being real and its eigenvectors, zi, orthogonal. Let us
denote aij=(zj)i. We then have

Lemma A.1. Let the following auxiliary functions

g1(b, N)=C
N

r=1

a2Nr
mr+jb

, g2(b, N)=C
N

r=1

a21r
m2r(mr+jb)

, g3(b, N)=C
N

r=1

a1raNr
mr(mr+jb)

.

(A.3)

Then

AN(a, a, u)

=e −ja(N+1) u
2
[det(G+jaKlI)] −1/2

× exp 5 Kla2

4
g1(aKl, N)− Kla2u2g2(aKl, N) − jKlaaug3(aKl, N)6 .

(A.4)

Proof. The function AN can be calculated with the aid of the joint
density function of the r’s, given by (2.11),

AN(a, a, u)=F
RN

dx1 dx2 · · · dxN fd(x1, x2,..., xN)

× exp 5axN− ja C
N

k=0
(u+xk)26

=e −ja(N+1) u
2 1

(s`2p)N
F

RN
dx1 dx2 · · · dxN

× exp 5 C
N

k=1
xkCk− ja C

N

k=1
x2k−

1
2s2

C
ij

Gijxixj 6 (A.5)
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where

Ck= − 2jau+adk, N. (A.6)

This is a gaussian integral that can be easily calculated by diagonalising the
matrix G. Due to the above mentioned properties of G the corresponding
transformation conserves the volume. Let zi be the new coordinates. We
have

xi=C
j

aijzj. (A.7)

Then

AN(a, a, u)=e −ja(N+1) u
2 1

(s`2p)N
F

RN
dz1 dz2 · · · dzN

× exp 5 C
N

r=1
Cr C

N

j=1
zjarj− ja C

N

r=1
z2r−

1
2s2

C
N

r=1
mrz

2
r
6

=e −ja(N+1) u
2
D
N

r=1

1

s`2p
F
+.

−.
dy exp 5yAr− jay2−

1
2s2
mry26

=e −ja(N+1) u
2
D
N

r=1

1 1
mr+jaKl
21/2 exp 5 KlA2r

4(mr+jaKl)
6. (A.8)

where

Ar=C
N

j=1
Cjajr. (A.9)

Now mr+jaKl are all nonvanishing eigenvalues of the matrix G+jaKlI,
and then

D
N

r=1

1 1
mr+jaKl
21/2=[det(G+jaKlI)] −1/2. (A.10)

On the other hand, since zk is eigenvector of G and mk its correspond-
ing eigenvalue, and taking into account Corollary 3.1, we get

1
mr

a1r —
1
mr

(zr)1=(G −1zr)1 — (Czr)1=C
N

j=1
C1j(zr)j=C

N

j=1
ajr, (A.11)
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and then we can express Ar as

Ar= C
N

k=1
Ckakr= C

N

k=1
( − 2jau+adk, N) akr

= − 2jau C
N

k=1
akr+aaNr= − 2jau

a1r
mr

+aaNr. (A.12)

Putting this expression and (A.10) into Eq. (A.8) ends the proof of the
lemma. L

In the following we shall calculate the three functions g.

Step 2.

Lemma A.2.

g1(b, N)=[(G+jbI) −1]NN, (A.13a)

g2(b, N)=
N
jb

+
1
b2

−
1
b2

[(G+jbI) −1]11, (A.13b)

g3(b, N)=
1
jb

−
1
jb

[(G+jbI) −1]1N. (A.13c)

Proof. To prove the lemma we make use of the spectral theorem
applied to G, and take into account that the z’s are eigenvectors in RN, and
then real. Thus, for any f defined on the eigenvalues of G

[f(G)]ij=C
N

r=1
f(mr)(zr)i (zr)j=C

N

r=1
f(mr) airajr. (A.14)

Now, if we take i=j=N and f(G)=(G+jb) −1 we get

[(G+jbI) −1]NN=C
N

r=1

1
mr+jb

(aNr)2=g1(b, N), (A.15)

which gives (A.13a). For the others we put, respectively, f(G)=
G −2(G+jbI) −1 with i=j=1 and f(G)=G −1(G+jbI) −1 with i=1,
j=N, getting

[G −2(G+jbI) −1]11=C
N

r=1

1
m2r(mr+jb)

(a1r)2=g2(b, N), (A.16)
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and

[G −1(G+jbI) −1]1N=C
N

r=1

1
mr(mr+jb)

a1raNr=g3(b, N). (A.17)

The following relations end the proof of the lemma

G −1(G+jbI) −1=
1
jb

[G −1− (G+jbI) −1], (A.18a)

G −2(G+jbI) −1=
1
jb

G −2+
1
b2

G −1−
1
b2

(G+jbI) −1, (A.18b)

(G −1)11=(G −1)1N=1, (A.18c)

(G −2)11= C
N

i=1
(G −1)1i (G −1)i1=N. L (A.18d)

Step 3. We need now to calculate the matrix elements of (G+jbI) −1.
We shall prove the following

Lemma A.3. Let Uk(z) be the Chebyshev polynomials (see
Theorem 4.1) for k \ 0, and U−1(z) — 0. Then

[det(G+jbI)] −1=
1

UN(1+jb/2) − UN−1(1+jb/2)
, (A.19a)

[(G+jbI) −1]11=
UN−1(1+jb/2) − UN−2(1+jb/2)
UN(1+jb/2) − UN−1(1+jb/2)

, (A.19b)

[(G+jbI) −1]1N=
1

UN(1+jb/2) − UN−1(1+jb/2)
, (A.19c)

[(G+jbI) −1]NN=
UN−1(1+jb/2)

UN(1+jb/2) − UN−1(1+jb/2)
. (A.19d)

Proof. To calculate the elements of the inverse matrix of G+jbI we
introduce two families of matrices, G (1)n (a) and G (2)n (a), of dimensions n × n
given by

(G (1)n )ij(a)=˛
a if i=j ] n,

− 1 if |i − j|=1,

a− 1 if i=j=n,

0 otherwise.

(A.20)
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and G (2)n is the same as G
(1)
n except that (G (2)n )nn (a)=a instead of a− 1. Note

that G+jbI=G (1)N (2+jb). Let also denote Dn(a)=det G
(2)
n . The following

relation can be easily obtained from the definitions of the twomatrices

det G (1)n =(a− 1) det G (2)n−1−det G
(2)
n−2. (A.21)

Moreover, the cofactor of the (1, 1)-element is det G (1)n−1, that of the (n, n)-
element, det G (2)n−1, and that of the (1, n)-element is 1. Consequently we have

[(G (1)n ) −1]11=
det G (1)n−1
det G (1)n

=
(a− 1) Dn−2− Dn−3
(a− 1) Dn−1− Dn−2

, (A.22a)

[(G (1)n ) −1]1n=
1

det G (1)n
=

1
(a− 1) Dn−1− Dn−2

, (A.22b)

[(G (1)n ) −1]nn=
det G (2)n−1
det G (1)n

=
Dn−1

(a− 1) Dn−1− Dn−2
. (A.22c)

Note that, in principle, these expressions are valid only if N > 3, since
Dn is defined for n > 0. We can, however, define D0=1, D−1=0 and
D−2= − 1 and expressions (A.22a)–(A.22c) become valid for N > 0.

Now, to calculate the determinant of G (2)n , an expansion based on the
first column, leads to the following recurrence relation

Dn=aDn−1− Dn−2, (A.23)

for n > 2. And we can see that, with the former definitions, this expression
is in fact valid for n \ 0. This recurrence relation and the expressions for D0
and D1 prove that Dn(2a) are the Chebyshev polynomials (see ref. 5). This
and the use of the recurrence relation in Eqs. (A.22a)–(A.22c) prove the
lemma. L

Step 4. It only remains to put together all the results obtained
previously. First we see that det(G+jaKlI) −1, given by Eq. (A.19a), coin-
cides with FN, 1, (4.3a). The functions g1, g2 and g3 can be expressed in
terms of the Chebyshev polynomials by using Eqs. (A.13a)–(A.13c) and
(A.19b)–(A.19d). Then we put these expressions into Eq. (A.4), as well as
det(G+jaKlI) −1. Thus, Eq. (A.1) can be written now

M (N+1)
n (s1, s2)=exp[s1U0+s2U

g
0− jdrln(N+1) |U0 |2] FN, 1(drnKl2)

× exp[Kls1s2g1(drnKl2, N) − Kl3d2r2n2 |U0 |2 g2(drnKl2, N)

− jdrnKl2(s1U0+s2U
g
0) g3(drnKl2, N)], (A.24)
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which gives the desired result, Theorem 4.1, if we take into account that

1 − jbg3(b, N)=[(G+jbI) −1]1N=FN, 1(b), (A.25)

g1(b, N)=FN, 2(b) − 1, (A.26)

and

(N+1) − jbg2(b, N)=FN, 2(b), (A.27)

where we have made use of Eqs. (4.3a), (4.3b), (A.13a)–(A.13c) and
(A.19a)–(A.19d), as well as, for the last expression, the recurrence relation
of the Chebyshev polynomials, Un(a)=2aUn−1(a) − Un−2(a). L
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